Croissance continue : les fonctions 2 CROISSANCE LINEAIRE

1 Croissance et fonctions

1.1 Le discret et le continu

Les suites, et donc le calcul du capital soumis a un taux d’intérét, sont calculés « par pas », c-a-d
que I'on ne peut rien dire entre deux valeurs. Les suites sont des calculs discontinus. En mathématique,
on utilise le terme « discret »pour désigner ce type de calcul par pas.

Les fonctions continues, par définition, permettent de calculer dans des intervalles donnés une
valeur de sortie (f(z)) pour n’importe quelle valeur d’entrée (x). Le calcul continu peut étre vu
comme la généralisation du calcul discret.

1.2 L’inversion des fonctions

On peut pour toute fonction continue f(z) trouver une fonction g(z) qui permettra de revenir a
la valeur de x.

z=g(f(x))

On appellera ce type de suite des fonctions inverses.
Par exemple, voici quelques fonctions inverses :

— pour f(x) = a.x + b, on peut définir la fonction inverse g(z) = =

— pour f(x) = 22, on peut définir la fonction inverse g(z) = /z;
— pour f(z) = 23, on peut définir la fonction inverse g(r) = /.

En terme de représentation géométrique, 'inversion d’un fonction sera représentée par une trans-
position (rotation et retournement) des x et f(x).

2 Croissance linéaire

2.1 Définition

La fonction linéaire (ou affine) définit la croissance linéaire. La définition la plus générique de la
fonction linéaire est :

R—R: f(x)=ax+b

2.2 Représentation graphique

La représentation graphique d’une fonction linéaire est une droite ou un segment de droite.

2.3 Homologie avec les suites arithmétiques

On peut observer que la fonction f(z) = a.z+b est une généralisation dans un cadre continu d’une
suite arithmétique, ou la raison vaut a et le le terme initial vaut b.
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FIGURE 1 — Représentation graphique de f(z) = 2z + 3.

3 Croissance du second degré

3.1 Définition

La fonction du second degré définit la croissance du second degré. La définition la plus générique
de la fonction du second degré est :

R—R: f(z)=az?+bzx+c

3.2 Représentation graphique

La représentation graphique d’une fonction du second est une parabole.
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FIGURE 2 — Représentation graphique de f(z) = 2% + 22 + 1.
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4 Croissance du troisieme degré

4.1 Définition

La fonction du troisiéme degré définit la croissance du troisieme degré. La définition la plus géné-
rique de la fonction du troisieme degré est :

R—R: f(z)=ax®+ba’+cx+d
4.2 Représentation graphique
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FIGURE 3 — Représentation graphique de f(z) = 2% — 22? — 3z — 3.
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5 Croissance exponentielle

5.1 Définition

Une croissance exponentielle est définie par une fonction exponentielle.
La définition de la fonction exponentielle est reprise ci-dessous :

R—-R: f(z)=a"

27 10*
20 =1 10°=1
2l =2 101 =10
22=4 | 10* =100
23 =8 | 10% = 1000
24 =16 | 10* = 10000

W N~ O M

5.2 Représentation graphique
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FIGURE 4 — Représentation graphique de f(x) = 2*.
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FIGURE 5 — Représentation graphique de f(x) = 10*.

5.3 Homologie avec les suites géométriques

On peut observer que la fonction f(z) = a® est une généralisation dans un cadre continu d’une
suite géométrique, ou la raison vaut a.
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5 CROISSANCE EXPONENTIELLE

5.4 Exemples

5.4.1 Croissance bactérienne

Une bactérie, tel que Escherichia coli dans des conditions idéales double sa population toutes les

20 minutes.

A partir d’une seule bactérie, apres 4 heures, on peut donc atteindre 4096 bactéries.

FIGURE 6
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5.4.2 Réaction nucléaire

Si on suppose que chaque neutron nucléaire libére 3 neutrons par choc nucléaire, on peut calculer
apres 6 demi-vies (et donc 6 chocs) que 729 neutrons seront émis.
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FIGURE 8 — Evolution du nombre de neutrons émis(en valeurs décimales).
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FIGURE 9 — Evolution du nombre de neutrons émis(en valeurs logarithmiques).
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6 Croissance logarithmique

Une croissance logarithmique est définie par une fonction logarithmique. La fonction logarithmique
est la fonction inverse de la fonction exponentielle.

6.1 Définition

R —R: f(z) =logs(x)

6.2 Représentation graphique
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FIGURE 10 — Représentation graphique de f(z) = logip(x) en valeurs décimales.

6.3 Exemples
6.3.1 Le pH

Le pH est calculé sur base de la formule :
pH = —logio(H™)
Il est donc directement fixé par la concentration en ion Hydrogéne (H™).
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F1GURE 11 — Représentation graphique du pH n fonction de la concentration en H-+.
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FIGURE 12 — Représentation graphique du pH n fonction du logarithme de la concentration en H+.

6.3.2 Le décibel

Le décibel (dB) est calculé sur base de la formule :

1
dB =10 x lOglo(f)
Iy
ou :
— I est l'intensité sonore en Watt/m?;

— I est D'intensité sonore de référence qui vaut 10712 en Watt/m?;
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FIGURE 13 — Décibels en fonction de 'intensité sonore(en valeurs décimales).
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FIGURE 14 — Décibels en fonction du logarithme de I’'intensité sonore.
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