1 Exercice 1 : détermination de la vitesse de réaction

1.1 Données

$$- [H_2C_20_4] = 5.10^{-3}M$$

$$- [KMnO_4]_i = 2.10^{-2}M$$

$$- V_{KMnO_4} = 1mL$$

$$- [KMnO_4]_f = 0M$$

$$- V = 100mL$$

1.2 Inconnues

 $-\Delta t = 40s$

$$v_{[KMnO_4]} = ?$$

1.3 Outils

$$\begin{aligned} v_{[x]} &= \frac{[x]_f - [x]_i}{\Delta t} \\ n &= \frac{m}{MM} \\ [x] &= \frac{n}{V} \end{aligned}$$

1.4 Transformation

$$\begin{split} H_2C_20_4 &\text{ et } H_2SO_4 \text{ sont en excès puisque la coloration disparaît.} \\ \text{Donc, } v_{[KMnO_4]} &= \frac{[KMnO_4]_f - [KMnO_4]_i}{\Delta t} \\ n_{KMnO_4} &= V_{KMnO_4} \times [KMnO_4]_i \\ [KMnO_4]_{iCorr} &= \frac{n_{KMnO_4}}{V} \\ v_{[KMnO_4]} &= \frac{0M - [KMnO_4]_iCorr}{\Delta t} \\ v_{[KMnO_4]} &= \frac{[KMnO_4]_{iCorr}}{\frac{\Delta t}{\Delta t}} \\ v_{[KMnO_4]} &= \frac{\frac{v_{KMnO_4}}{V}}{\frac{V_{KMnO_4}}{\Delta t}} \\ v_{[KMnO_4]} &= \frac{\frac{v_{KMnO_4} \times [KMnO_4]_i}{V}}{\frac{V_{KMnO_4} \times [KMnO_4]_i}{V}} \\ v_{[KMnO_4]} &= \frac{v_{KMnO_4} \times [KMnO_4]_i}{V} \\ \end{split}$$

1.5 Conversion d'entrée

$$1mL = 0,001L$$

 $100mL = 0,1L$

1.6 Résolution numérique

$$\begin{array}{l} v_{[KMnO_4]} = \frac{\frac{0,001L \times 2.10^{-2}M}{0,1L}}{40s} \\ v_{[KMnO_4]} = -5.10^{-6} \frac{mole}{L.s} \end{array}$$

1.7 Conversion de sortie

1.8 Validation

La valeur correspond à la réponse attendue.

1.9 Réponse

La vitesse de décomposition du $KMnO_4$ est de $5.10^{-6} \frac{mole}{L_{cs}}$.

Exercice 3: modification du volume 2

2.1 Données

$$2HI \rightarrow H_2 + I_2$$

- $-m_{HI} = 192g$
- $--MM_{HI} = 127$
- $-V_A = 1L$
- $--V_B = 500mL$
- $-t^{\circ} = 400^{\circ}C$

2.2Inconnues

- b) $[HI]_A = ?$
- c) $[HI]_B = ?$
- d) $v_A > v_B$?

2.3Outils

$$[x] = \frac{n}{V}$$

$$n = \frac{m}{MM}$$

Si la concentration initiale de réactifs est plus élevée, alors la vitesse de la réaction est plus élevée.

Transformation

$$[x] = \frac{m}{MM \times V}$$

Conversion d'entrée

500mL = 0, 5L

Résolution numérique

b)
$$[HI]_A = \frac{192}{127 \times 1L} = 1,51$$
 mole/L
c) $[HI]_B = \frac{192}{127 \times 0,5L} = 3,02$ mole/L

c)
$$[HI]_B = \frac{192}{127 \times 0.5L} = 3.02 \text{ mole/L}$$

2.7Conversion de sortie

2.8Validation

Les valeurs correspondent aux réponses attendues.

Réponse 2.9

a)

$$2HI \rightarrow H_2 + I_2$$

- b) La concentration en HI dans le ballon A est de 1,51 mole/L.
- c) La concentration en HI dans le ballon B est de 3,02 mole/L.
- d) Vu que la concentration est plus élevée dans le ballon B que dans le ballon A, la vitesse de la réaction sera plus élevée dans le ballon B que dans le ballon A.