1 Minimum, maximum et médiane

1.1 Minimum (min)

minimum (min) = la plus petite valeur de la population

1.2 Maximum (max)

maximum (max) = la plus grande valeur de la population

1.3 Médiane géométrique (med_{geom})

médiane géométrique = la valeur médiane (au milieu) entre le minimum et le maximum.

$$med_{geom} = min + \frac{(max - min)}{2}$$

2 Moyenne, variance et écart-type

2.1 Moyenne (\bar{x})

$$\bar{x} = \frac{\sum n_x \cdot x}{n}$$

2.2 Variance (var)

$$var = \frac{\sum n_x . (\bar{x} - x)^2}{n}$$

2.3 Écart-type (σ)

$$\sigma = \sqrt{var}$$

- $-[\bar{x}-\sigma;\bar{x}+\sigma]=68,27\%$ de la population (ou de l'échantillon)
- $[\bar{x} 2\sigma; \bar{x} + 2\sigma] = 95,45\%$ de la population (ou de l'échantillon)
- $-[\bar{x}-3\sigma;\bar{x}+3\sigma]=99{,}73\%$ de la population (ou de l'échantillon)

3 Classes, fréquence, cumul et mode

3.1 Classes

Classe ou catégorie (A) = regroupement discret de valeur

3.2 Fréquence (freq(A))

$$freq(A) = \frac{n_A}{n}$$

3.3 Fréquence cumulée $(freq_{cumul}(A))$

Sur base d'un ordre donné, par exemple A, B, C, D, E, F:

$$freq_{cumul}(D) = freq_{cumul}(C) + freq(D)$$

3.4 Mode (*mode*)

mode = la classe la plus fréquente

3.5 Médiane statistique (med_{stat})

médiane = la valeur à laquelle :

- 50% de population/échantillon sera plus petite;
- 50% de population/échantillon sera plus grande.

La valeur correspondant au milieu de la population dans une liste ordonnées des données.

- si le nombre n est impair : la valeur
- si le nombre n est pair : la moyenne des deux données du « milieu » (la moyenne des élèments $\frac{n}{2} 1$ et $\frac{n}{2} + 1$).

4 Statistiques à deux variables

4.1 Méthode de Mayer

- Diviser la population ou l'échantillon, en deux sous-populations au niveau de la médiane statistique;
- Calculer les moyennes en x et y pour chacune des 2 sous-populations $((x_1, y_1)$ et $(x_2, y_2))$;
- Positionner les point (x_1, y_1) et (x_2, y_2) sur le graphique;
- Dessiner une droite entre ces deux points.

4.2 Méthode des moindres carrés

Pour une droite de type y = ax + b:

4.2.1 Covariance

$$Cov(x,y) = \frac{\sum (x.y - \bar{x}.\bar{y})}{n}$$

4.2.2 Calcul de a et b

$$a = \frac{Cov(x, y)}{V(x)}$$

$$b = \bar{y} - a.\bar{x}$$

4.2.3 Coefficient de corrélation

$$r = \frac{Cov(x, y)}{\sigma_x . \sigma_y}$$

4.2.4 Coefficient de détermination